

Lecture 9

Program Logic and Control

Text:
 (5th Edition: Chapter 7)
(4th Edition Chapter 8)

Computers and Programming

9.1

No programming language is complete without the ability
to make decisions and react by

• skipping over instructions which should not be executed
• repeating instructions under some control

In high-level languages there are statements which do the
skipping and repetition of instructions:

if (condition) then statement [else statement];

 if (count == 0) return 0
 else return sum / count;

while (condition) statement;

 while (X<10) {
 sum = sum * 2;
 x ++
 }

for (condition; condition; condition) statement;

 for (i=0; i<10; i++)
 j = j+i;

do statement while (condition);
 do
 x = x+y
 while (x < 100);

Computers and Programming

9.2

There are no built-in machine instructions which implement
these complex structures.

These statement "structures" must be written explicitly in
machine language (and therefore, assembly language)

The instruction which can change the "flow" of the program
is the jump instruction:

JMP GoHere

The identifier "GoHere" must identify the assembly
language statement at which execution should continue.
"GoHere" is called a LABEL.

LABELS

A label is used to indicate the destination of a JUMP

 JMP OVERTIME AGAIN: ……
 ….. ……
OVERTIME: JMP AGAIN

The label

• begins in column 1
• is a legal identifier
• is terminated with a colon (“:”) when defined
• has no colon when used
• may be defined on the same or preceding line

Computers and Programming

9.3

Conditional Jump Instructions

The conditional jump instructions examine the 16-bit flags
register. Each bit represents the presence or absence of
some condition, such as

SF Sign Flag This bit is changed after an arithmetic

instruction. If the result of arithmetic is
positive, the bit will be 0, if the result is
negative it will be 1.

ZF Zero Flag This bit is changed after an arithmetic or

comparison instruction. If the result is not
zero, the bit is cleared to zero, if the result
is zero the bit is set to one.

Some JUMP Instructions (signed data)
 Description Description FlagsTested
JE Jump if equal JZ Jump if zero ZF
JNE Jump Not Equal JNZ Jump Not Zero ZF
JG Jump Greater

Than
JNLE Jump Not

Less or Equal
ZF, SF,
OF

JGE Jump Greater
Than or Equal

JNL Jump Not
Less

SF, OF

JL Jump Less Than JNGE Jump Not
Greater Than
or Equal

SF, OF

JLE Jump Less Than
or Equal

JNG Jump Not
Greater Than

ZF, SF,
OF

Computers and Programming

9.4

Decision Making

Example:
 Write assembly code for

 if (X = Y) P++ else Q--;

Determine the OPPOSITE condition of the comparison
(the JUMP is done when it is FALSE). (Here, not equal)

if:
 mov ax,X ; need one op in reg
 cmp ax,Y ; if X is
 jne else ; equal to Y
 inc P ; do this
 jmp endif ; and get out
else: ; else
 dec Q ; do this
endif: ; and we’re done

F T T F

if - then if - then - else

Computers and Programming

9.5

Statement repetition :

Example:

 while (X > Y) {
 X--;
 Y++

}

 while:
 mov ax,X ; copy of X needed
 cmp ax,Y ; while X is
 jng endwhile ; greater than Y
 dec X ; x--
 inc Y ; y++
 jmp while ; check again
 endwhile:

Try:
 do
 X++;
 while (X<100);

F T

F T

while do - while

Computers and Programming

9.6

Nesting Control Structures

Suppose you are given the following (silly) Java program
and you wish to write it in assembly language:

 X = 0;

while (X < 10) {
 if (X = 4) then A = 1
 else B = 2;
 X = X + 1
 } // while

The program contains a while loop and an if-then-else
statement.

Two values can be compared using the CMP instruction.
Suppose that the value of X is in the AX register. The
comparison for the while loop could be done with:

 CMP AX,10

But what should the next instruction do after the
comparison?

Look at the structure of a while loop!

Computers and Programming

9.7

While loop:

The while loop structure evaluates the condition, and if the
condition is FALSE, a jump is done to exit the loop. If the
condition is true, then fall through.

After the loop body is done, another jump follows which is
always done (there are no conditions, so it is called an
unconditional jump).

The two jumps require two different labels (one to go back,
one to exit).

 WHILE:
 CMP AX,10 ;compare X to 10
 jump to EXIT if not less than;
 do the body of the loop
 JMP WHILE
 EXIT: ;end of the loop

Jump

F T Comparison

Fall through

Jump

Computers and Programming

9.8

WHILE:

 CMP AX,10 ;compare X to 10
 JNL EXIT
 do the body of the loop
 JMP WHILE
 EXIT: ;end of the loop

The while loop is now done. Now we need to code the if-
then-else statement and the assignment statement.

 X = 0;

while (X < 10) {
 if (X == 4) A = 1;
 else B = 2;
 X = X + 1
 } //while

They should be placed, in sequence, inside the while loop
(where the body of the while loop goes).

WHILE:
 CMP AX,10 ;compare X to 10
 JNL EXIT
 do the body of the loop
 JMP WHILE
 EXIT: ;end of the loop

Computers and Programming

9.9

The technique for coding if-then and if-then-else is similar
to that for the while loop – look at the structure and
determine where the conditional jumps go, and under what
conditions they jump.

If-then-else:

X = 0;
while (X < 10) {

 if (X == 4) A = 1;
 else B = 2;
 X = X + 1
 } //while

Jump on
the false
condition

T F

Jump to
avoid
doing the
“else” part

Computers and Programming

9.10

WHILE:

 CMP AX,10 ;while x is
 JNL EXIT ; less than 10
 CMP AX,4 ;if (X = 4)
 JNE ELSE ; then
 MOV A,1 ; A = 1
 JMP ENDIF
 ELSE: ; else
 MOV B,2 ; B = 2
 ENDIF:
 INC AX ;X = X + 1
 JMP WHILE
 EXIT: ;end of the loop

Computers and Programming

9.11

The LOOP instruction

• works in conjunction with the CX register
• must jump to a short address
• does several operations

1. Subtract 1 (one) from the CX register

2. If the CX register is non-zero, JUMP to the short

address, otherwise fall through to the next
instruction.

 page 60,132
TITLE P08LOOP (COM) Illustration of LOOP
 .MODEL SMALL
 .CODE
 ORG 100H
BEGIN PROC NEAR
 MOV AX,01 ;Initialize AX,
 MOV BX,01 ; BX, and
 MOV DX,01 ; DX to 01
 MOV CX,10 ;Initialize
A20: ; number of loops
 INC AX ;Add 01 to AX
 ADD BX,AX ;Add AX to BX
 SHL DX,1 ;Double DX
 LOOP A20 ;Decrement CX,
 ; loop if nonzero
 MOV AX,4C00H ;Exit to DOS
 INT 21H
BEGIN ENDP
 END BEGIN

Computers and Programming

9.12

Exercises - Lecture 9

Write assembly code for the following statements. Unless told, presume all variables are integer.

1. if (a <= b)
 z = a+b;

2. if (p==4) {
 p = 0;
 r = 1 }
 else {
 p = 1;
 r = 0;
 } //else

3. if ((p==1) and (q==2)) {
 q = 1;
 p = 2;
 } //if

4. if ((a==b) or (b==c) or (c==d)) {
 a=0;
 b=0;
 c= d+1;
 } //if

5. while (x != y) x++;

Computers and Programming

9.13

6. n=1;
 sumodd = 0;
 while (n < last) {
 sumodd += n;
 n += 2;
 }

7. n=1;
 sumodd = 0;
 while (n < last) {
 if ((n != 9) or (n != 99))
 sumodd += n;
 n += 2;
 }

8. do {
 p++;
 q++;
 while (p < 100)

9. do {
 p++;
 q--;
 while (p != q)

10. Encode the following statements using the LOOP instruction.

 x=0;
 for (i=1; i<=10; i++) x = x+i;

